Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells.
نویسندگان
چکیده
Normal dynamic loading prevents bone resorption; however, the means whereby biophysical factors reduce osteoclast activity are not understood. We show here that mechanical strain (2% at 10 cycles per minute) applied to murine marrow cultures reduced 1, 25(OH)(2)D(3)-stimulated osteoclast formation by 50%. This was preceded by decreased expression of osteoclast differentiation factor (ODF/TRANCE). RT-PCR for ODF/TRANCE revealed that ODF/TRANCE mRNA in strained cultures was 59 +/- 3% of that seen in control cultures. No significant effects on total cell count, thymidine uptake, or alkaline phosphatase activity were induced by strain. To isolate the cell targeted by strain, primary stromal cells were cultured from marrow. Mechanical strain also reduced mRNA for ODF/TRANCE to 60% that of control in these cells. In contrast, mRNA for membrane-bound macrophage colony-stimulating factor was not significantly affected. Soluble ODF ( approximately 2 ng/ml) was able to reverse the effect of strain, returning osteoclast numbers to control. Because osteoclast formation is dependent upon ODF/TRANCE expression, strain-induced reductions in this factor may contribute to the accompanying reduction in osteoclastogenesis.
منابع مشابه
Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells.
Although it is known that mechanical stress to osteoblast and periodontal ligament cells suppresses osteoclast differentiation, little is known about the direct effect of mechanical stress on osteoclast differentiation. In this study, we examined the role of mechanical stress on osteoclast differentiation using murine pre-osteoclastic RAW264.7 cells treated with receptor activator of nuclear fa...
متن کاملDIFFERENTIAL EXPRESSION OF SURFACE MARKERS CD45RB AND CD44 ON MURINE CD8+ CELLS
Considering the emerging importance of phenotypic markers as indicators of cell function and differentiation, we studied patterns ofCD44 and CD45RB expression in CD8+ murine T cells with prior exposure to antigen or staphylococcal enterotoxin B ( SEB ). Following in vivo priming with two purified protein derivatives (one from a virulent WHO strain and the other from an avirulent strain), T ...
متن کاملThrombin inhibits osteoclast differentiation through a non-proteolytic mechanism.
Thrombin stimulates expression of interleukin 6 and cyclooxygenase 2 by osteoblasts, both of which enhance osteoblast-mediated osteoclast differentiation by increasing the ratio of receptor activator of nuclear factor κB ligand (RANKL) expression to that of osteoprotegerin (OPG) in osteoblasts. We hypothesised that thrombin would also increase this ratio and thereby stimulate osteoclast differe...
متن کاملVitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture.
Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bo...
متن کاملDifferential effects of mechanical strain on osteoclastogenesis and osteoclast-related gene expression in RAW264.7 cells.
Mechanical strain plays a critical role in the formation, proliferation and maturation of bone cells. However, little is known about the direct effects of different magnitudes of mechanical strain on osteoclast differentiation. The aim of the present study was to investigate how the fusion and activation of osteoclasts can be regulated by mechanical strain magnitude using the RAW264.7 mouse mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2000